
Extending Formal Cryptographic Protocol
Analysis Techniques for Group Protocols and

Low-Level Cryptographic Primitives

Catherine Meadows
Center for High Assurance Computer Systems

Code 5543
Naval Research Laboratory

Washington, DC 20375
meadows@itd.nrl.navy.mil

We have recently seen the development of a number of new tools for the anal-
ysis of cryptographic protocols. Many of them are based on state exploration, that
is, they try to find as many paths through the protocol as possible, in the hope that,
if there is an error, it will be discovered. But, since the search space offered by
a cryptographic protocol is infinite, this search alone cannot guarantee security if
no attack is found. However, some state exploration tools do offer the ability to
prove security results as well as find flaws by the use of theoretical results about
the system that they are examining. In particular, the NRL Protocol Analyzer [4]
allows its user to interactively prove lemmas that limit the size of its search space.
If the resulting search space is finite, then it too can guarantee that a protocol is
secure by performing an exhaustive search.

However, the ability to make such guarantees brings with it certain limitations.
In particular, most of the systems developed so far model only a very limited set
of cryptographic primitives, often only encryption (public and shared key) and
concatenation. They also avoid low-level features of cryptographic algorithms,
such as the commutativity and distributivity properties of RSA.

Most importantly, there has as yet been no attempt to use state exploration
techniques to reason about group protocols, that is, protocols that involve com-



munication among a set of principals which could be arbitrarily large. The reason
why this is the case is not hard to see; in a group protocol even a legal execution
can take an unbounded number of steps. This makes state exploration and the
avoidance of state explosion even more difficult. Thus it is no surprise that so
far, the only successful formal verification of group cryptographic protocols that
has been done to date has been done involving the use of theorem provers [5, 2].
However, although theorem provers can give the assurance that a protocol is cor-
rect, they do not give the same assistance in pinpointing problems as the direct
generation of counterexamples.

In our work we are seeking to fill this gap by applying the NRL Protocol An-
alyzer to the problem of verifying group security protocols and protocols that use
other cryptographic primitives than those used in the standard model. Since the
NRL Protocol Analyzer already includes a limited theorem-proving capability, we
believe that it is well-suited for scaling up to these types of protocols by extending
the power and scope of that capability. Once this is done, we can use the NRL
Protocol Analyzer as before to explore the remaining search space.

We have recently started an analysis of the suite of protocols developed for the
CLIQUES project [7]. These are a set of group key distribution protocols that use
a version of the Diffie-Hellman key exchange protocol. Moreover, it includes not
only the standard operations associated with Diffie-Hellman, but also the concepts
of repeated exponentiation and exponentiation by an inverse, so that it requires a
richer model than that we have used previously.

We are performing an analysis of the A-GDH.2 protocol from [1]. This is
a protocol in which a key is shared among a group of arbitrary size. We chose
this because it is the basis of all the protocols used in the CLIQUES project, and
because its simplicity makes it a useful subject of experimentation. This proto-
col guarantees secrecy in the sense that, if no member of the group is dishonest,
then the key is not compromised. Our approach was first to make some minor
changes to the NRL Protocol Analyzer that made the specification and compila-
tion of group protocols possible. We then proved some initial lemmas that were
defined and proved pretty much in the same way as in two or three-party protocols.

Finally, we set out to prove a theorem stating that, if a principal accepts a key
K as a group key, and all the principals in the group are honest, then the key is
not compromised. In order to do this, we found out that we had to devise a new
construct which we call aparameterized language.

Briefly, a languageis a construct used by the NRL Protocol Analyzer to define
invariants [3]. Languages are so-called because they are defined using a BNF



grammar, but actually most languages as they are generated by the NRL Protocol
Analyzer can be defined is the smallest setL containing a fixed setS that is closed
under a set of operations by the intruder involving members ofL and arbitrary
terms. One usesL to prove secrecy results by showing that the intruder’s not
knowing members ofL is invariant under state transition.

It can be seen that languages are closely related to strand space ideals [8] and
to rank functions [6]. Languages are more general than ideals in that the set of op-
erations available to the intruder is left open and can be defined in the specification
itself, while in strand space ideals the operations are restricted to encryptions and
concatenation. On the other hand, ideals are more general than languages in that
is possible to restrict the keys used for the encryption operation to the members
of a particular set, which is not possible for NRL Protocol Analyzer languages.
Parameterized languages put conditions, not only on the keys used for encryption
and the messages encrypted, but on any input to any operation defined in the lan-
guage. Thus parameterized languages can be thought of as a generalization of
both NRL Protocol Analyzer languages and strand space ideals. We find that the
fact that the analysis of the A-GDH.2, at least so far, seems to require only this
relatively straightforward generalization of languages an encouraging one.

We are currently continuing our verification of A-GDH.2, and plan to expand
our investigation to all the CLIQUES protocols. We expect to continue refining
and extending the use of parameterized languages and other tools as our analysis
progresses.

References

[1] G. Ateniese, M. Steiner, and G. Tsudik. Authenticated group key agreement
and friends. InACM Conference on Computer and Communications Security.
ACM, November 1998.

[2] J. Bryans and S. Schneider. CSP, PVS, and a recursive authentication pro-
tocol. In DIMACS Workshop on Formal Verification of Security Protocols,
September 1997.

[3] C. Meadows. Language generation and verification in the NRL Protocol An-
alyzer. InProceedings of the 9th Computer Security Foundations Workshop.
IEEE Computer Society Press, June 1996.



[4] C. Meadows. The NRL Protocol Analyzer: An overview.Journal of Logic
Programming, 26(2):113–131, 1996.

[5] L. C. Paulson. Mechanized proofs for a recursive authentication protocol.
In Proceedings of the 10th Computer Security Foundations Workshop, pages
84–95. IEEE Computer Society Press, June 1997.

[6] S. Schneider. Verifying authentication protocols with CSP. InProceedings of
the 10th Computer Security Foundations Workshop. IEEE Computer Society
Press, June 1997.

[7] M. Steiner, G. Tsudik, and M. Waidner. CLIQUES: A new approach to key
agreement. InIEEE International Conference on Distributed Computing Sys-
tems. IEEE Computer Society Press, May 1998.

[8] J. Thayer, J. Herzog, and J. Guttman. Honest ideals in strand spaces. InPro-
ceedings of the 11th Computer Security Foundations Workshop. IEEE Com-
puter Society Press, June 1998.


